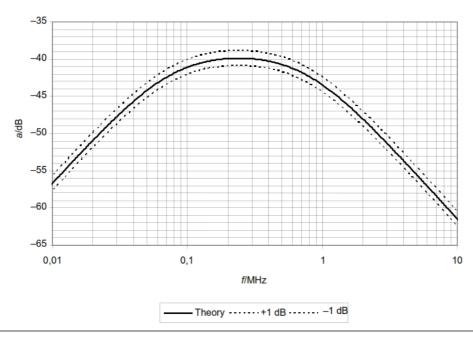

APPLICATION NOTE

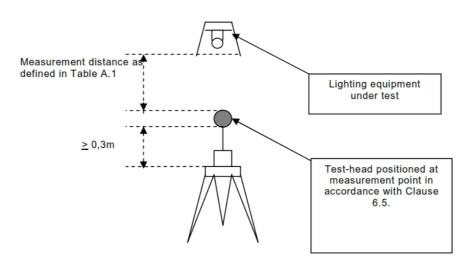

VAN DER HOOFDEN TEST-HEAD VDH-01

The test-head is composed by four parts:

- A conductive sphere of 210 mm diameter simulating the human head
- A connecting wire simulating the neck
- An impedance-matching network into 50 Ω , also used as overload protection for the receiver
- A suitable support (wooden tripod) with minimum height of 80 cm

The transfer function of the impedance-matching network (also called "protection network") must be defined very precisely (± 1 dB) and represents the calibration curve of the test-head:

Purpose of the test is measuring currents induced in the test-head in the frequency range from 20 kHz to 10 MHz and according the receiver settings as stated in these tabels:


Table 2 - Receiver settings

Frequency range	B ₆ according to CISPR 16-1-1	Measurement time	f _{step}	Detector
20 kHz – 150 kHz	200 Hz	100 ms	220 Hz	Peak
150 kHz – 10 MHz	9 kHz	20 ms	10 kHz	Peak

Table D.3 - Frequency steps

Frequency range	B ₆ according to CISPR 16-1-1	f _{step_ampl}
20 kHz – 150 kHz	200 Hz	220 Hz
150 kHz – 10 MHz	9 kHz	10 kHz

Typical measurement set-up:

Further examples are presented in the IEC 62493, Annex B.

Assessment method

The assessment method requires:

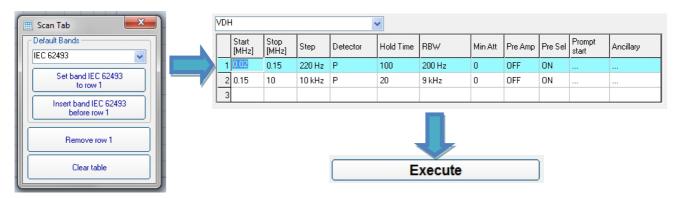
- 1. Converting the RF voltage (in dBµV) measured by the EMI receiver into current density (A/m²)
- 2. Rating the current density with the limit
- 3. Summing the results for the frequency range 20 kHz 10 MHz

to obtain the factor "F" as a result.

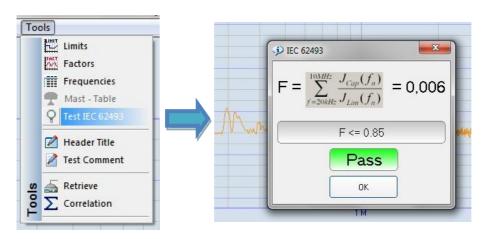
For compliance, this factor shall not exceed the value of **0.85**.

The complete process is described in the IEC 62493, Annex E.

If calculations are done manually, this method results time-consuming and error-prone.


In order to make faster, error-free measurements a specific function has been added to the PES (PMM Emission Suite) Release 2.00 providing for:

- Preset receiver settings
- Automatic calculation of the factor F


In addition, the delayed start function of the PES allows for the lamp warm-up (15-30 min) as required by the Chapter 6, measurement procedure.

Just few clicks are required to carry out the measurement:

Enter the IEC 62493 preset scan table and start the sweep:

Select the IEC 62493 function in "Tools" and get the result: Easy, safe!

This extremely user-friendly procedure is specific of the PMM Emission Suite - no competition! Download the current PES version 2.00 from our web page.

Remark

The VDH-01 can be used with any existing EMI receiver, obviously full CISPR 16-1-1 compliant; in such cases, the factor F shall have to be computed manually.